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POTENTIAL, VALUE, AND CONSISTENCY!

BY SERGIU HART AND ANDREU MAS-COLELL

Let P be a real-valued function defined on the space of cooperative games with
transferable utility, satisfying the following condition: In every game, the marginal contri-
butions of all players (according to P) are efficient (i.e., add up to the worth of the grand
coalition). It is proved that there exists just one such function P—called the potential—and
moreover that the resulting payoff vector coincides with the Shapley value. The potential
approach is also shown to yield other characterizations for the Shapley value, in particular,
in terms of a new internal consistency property. Further results deal with weighted Shapley
values (which emerge from the above consistency) and with the nontransferable utility case
(where the egalitarian solutions and the Harsanyi value are obtained).

KEYWORDS: Shapley value, potential, consistency, n-person games, weighted values.

1. INTRODUCTION

CONSIDER THE PROBLEM of allocating some resource (or costs, profits, etc.) among
n participants (economic agents, projects, departments,...). Assume that the
situation is well described as an n-person game in characteristic function form.
The problem we address here is that of developing general principles for
performing this allocation.

An approach with a long tradition in economics” would proceed by assigning
to every player his direct marginal contribution to the grand coalition (i.e., the set
of all players). It is obvious, however, that it is not possible in general to solve the
problem in this way. This is simply because these marginal contributions may not
add up to the worth of the grand coalition (namely, they will either be not
feasible, or, if feasible, not efficient); from now on, we will refer to this “adding
up” requirement simply as “efficiency.”

In this paper we introduce a new analytical concept with clear affinities to the
marginal contribution approach. We propose that to every allocation problem
described by an n-person game be associated a single number (called the
potential of the game) and that each player receive his marginal contribution
(computed according to these numbers). The surprising fact is: the requirement
that a feasible and efficient allocation (one that exactly shares everything avail-
able) should always be obtained determines the procedure uniquely. Namely,
there exists just one such allocation procedure. Moreover, the resulting solution is
well known: it is the Shapley (1953b) value.

2

! This paper supersedes our earlier papers, “Value and Potential: Marginal Pricing and Cost
Sharing Reconciled” and “The Potential: A New Approach to the Value in Multi-Person Allocation
Problems” (HIER, Harvard University, DP-1127, January, 1985 and DP-1157, June, 1985). We want
to acknowledge useful discussions with Michael Maschler and Lloyd S. Shapley. Financial support by
the National Science Foundation and by the U.S.-Israel Binational Science Foundation is gratefully
acknowledged.

For a modern point of view, see, for example, Ostroy (1984).
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590 SERGIU HART AND ANDREU MAS-COLELL

In summary, our central result is the following:

THEOREM A: There exists a unique real function on games—called the potential
—such that the marginal contributions of all players (according to this function) are
always efficient. Moreover, the resulting payoff vector is precisely the Shapley value.

This theorem is discussed at length in Section 2.

Although the potential is in its essence just a technical tool, it is nonetheless a
powerful and suggestive one. In particular, the potential approach has suggested
to us two further, substantive ways to characterize the Shapley value. The first (in
Section 3) uses a “preservation of differences” principle, which is a straightfor-
ward generalization of the “divide the surplus equally” idea for two-person
situations. The second (in Section 4) considers an internal “consistency” prop-
erty: eliminating some of the players, after paying them according to the solution,
does not change the outcome for any of the remaining ones. The main result here
is as follows:

THEOREM B: Consider the class of solutions that, for two-person games, divide
the surplus equally. Then the Shapley value is the unique consistent solution in this
class.

In Section 4 we also discuss alternative consistency requirements (including
one for various bargaining solutions).

Next, we broaden the class of consistent solutions by dropping symmetry. We
obtain the following theorem (in Section 5):

THEOREM C: Consider the class of solutions that, for two-person games, are
efficient, invariant (in a very weak sense), and monotone. Then the weighted
Shapley values are the only consistent solutions in this class.

The weighted Shapley values were introduced by Shapley (1953a) as nonsym-
metric generalizations of the Shapley value. They are based on relative weights
among the players. By our result, only one requirement— consistency—suffices to
endogenously generate these weights (with the appropriate very weak initial
‘onditions for two-person games being assumed).

Finally, we address also the nontransferable utility case (in Section 6): the
potential approach leads naturally to the egalitarian solutions studied by
Myerson (1980) and Kalai-Samet (1985). These can be seen as the first step in the
construction of the Harsanyi (1963) NTU-value (Theorem D provides the exact
characterization). Theorem E generalizes Theorem C. It shows that consistency
(together with the correct initial conditions for two-person transferable utility
games) characterizes the egalitarian solutions for nontransferable utility games
too.
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2. THE POTENTIAL

A (cooperative) game (with side payments) is a pair (N, v), where N is a finite
set of players and v: 2N — R is® a characteristic function satisfying v(¢) = 0. We
will refer to a subset S of N as a coalition, and to v(S) as the worth of S. Given
a game (N, v) and a coalition S, we write (S, v) for the subgame obtained by
restricting v to subsets of S only (i.e., to 25).

Let G be the set of all games. Given a function P: G — R which associates a
real number* P(N, v) to every game (N, v), the marginal contribution of a player
in a game is defined to be

D'P(N,v)=P(N,v)—P(N\{i},v),

where (N, v) is a game and i € N; recall that the (sub)game (N\ {7}, v) is the
restriction of (N, v) to N\ {i}.

A function P: G— R with P(¢,v)=0 is called a potential function if it
satisfies the following condition:

(2.1) Y. D'P(N,v)=v(N)

ieN
for all games (N, v). Thus, a potential function is such that the allocation of
marginal contributions (according to the potential function) always adds up
exactly to the worth of the grand coalition. From now on, we refer to this
property as “efficiency.”

THEOREM A: There exists a unique potential function P. For every game (N, v),
the resulting payoff vector (D'P(N,v)),c 5 coincides with the Shapley value of the
game. Moreover, the potential of any game (N, v) is uniquely determined by (2.1)
applied only to the game and its subgames (i.e., to (S, v) for all S C N).

Let Sh'(N, v) denote the Shapley value of player i in the game (N, v). We thus
have

D'P(N,v)=Sh'(N,v)
for every game (N, v) and each player i in N.

PROOF OF THEOREM A: Formula (2.1) can be rewritten as

1
(22)  P(N,v)=—|v(N)+ X P(N\{i},v)|.

IN| ieN
Starting with P(¢,v)=0, it determines P(N, v) recursively. This proves the
existence of the potential function P, and moreover that P(N,v) is uniquely
determined by (2.1) (or (2.2)) applied to (S, v) for all S C N.

3R denotes the real line.
We write P(N, v) rather than the more cumbersome P((N, v)).



592 SERGIU HART AND ANDREU MAS-COLELL

Next, express (N,v) as a linear combination of unanimity games: v=
Yrcnyarur, where up is the T-unanimity game, defined by u (S)=1 if §
contains 7 and =0 otherwise (it is well known that this decomposition exists
and is unique). Define d=a/|T| (this is Harsanyi’s “dividend” to the mem-
bers of coalition T'), and put

(2.3)  P(N,v)=) d,.

It is easily checked that (2.1) is satisfied by this P; hence (2.3) defines the unique
potential function. The result now follows since Sh'(N,v) =X (7. ;7 dr (L&, T
ranges over all subsets 7 of N that contain ). Q.E.D.

For further interpretation of the potential we derive an explicit formula ((2.1)
defines it only implicitly). Consider the following (standard) model of choosing a
random subset S of a given set N with n= |N| elements: First, a size s=
1,2,..., n is chosen randomly (with probability 1/n each). Second, a subset S of
N of size s is chosen randomly (with probability 1/ (:{), where s = |S|). Equiva-
lently, one can order the n elements (there are n! orders), choose a cutting point
s (there are n choices), and take the first s elements in the order. Let E denote
expectation with respect to this probability distribution.

PROPOSITION 2.4: Let P be the potential function. Then

Sos)]

P(N,u)=E[|S|

for every game (N, v).
Proor: Using the explicit probabilities described above, we have to show that

25 P(N,o)= % (—s_—l)%i—sﬁv(s),

ScN

where n= |N| and s=|S|. The marginal contributions D'P of (2.5) are easily
seen to coincide with the Shapley value; therefore (2.5) is the potential function.
Q.E.D.

Thus, the potential is the expected normalized worth; equivalently, the per-capita
potential P(N, v)/|N| equals the average per-capita worth v(S)/|S|. Hence, the
potential provides a most natural one-number summary of the game. The
Shapley value is known to be an expected marginal contribution. We obtain it
here as a marginal contribution to an expectation (the potential).®

% An alternative proof is to show that (D'P), satisfy the standard axioms for the Shapley value
(this is done inductively, using (2.1) or (2.2); see Hart and Mas-Colell (1988), which includes
alternative proofs for other results here, as well as further discussions).

¢ The idea of reversing the order of integration and differentiation has been fruitfully used by
Mertens (1980) in the context of values of nonatomic games.
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REMARK 2.5: Our approach can be regarded as a new characterization for the
Shapley value. Only one axiom, (2.1), suffices. Moreover, only the game itself and
its subgames have to be considered; this is important particularly in applications,
where typically only one specific problem is considered. In contrast, the standard
axiomatizations require the application of the axioms to a large class of games
(e.g., all games; or, all simple games; etc.) in order to uniquely determine it for
any single game. Finally, note that although marginal contributions appear
implicitly in the formulae for the Shapley value, our approach uses this principle
explicitly (i.e., in the axioms), and in a very simple form.

REMARK 2.6: Formula (2.2) yields a simple and straightforward recursive
procedure for the computation of the potential, and thus, a fortiori, for the
Shapley value of the game as well as of all its subgames. It seems to be a most
efficient algorithm for computing Shapley values.

REMARK 2.7: It is clear that P is, formally, just a mathematical potential
function for the Shapley value (taking discrete rather than infinitesimal differ-
ences); this explains our choice of name for it. Thus, the Shapley value vector
function is the (discrete) gradient of the potential function.” Moreover, if we do
not require P(¢,v) =0, then P is only determined up to an additive constant
(which of course does not change the payoff vectors).?

REMARK 2.8: One may regard P as an operator that associates to each game
(N, v) another game (N, Pv), given by (Pv)(S)=P(S,v) for all SCN. It is
easily checked that this is a linear, positive, and symmetric operator; it is
one-to-one and onto, and its fixed points are exactly the inessential (additive)
games. Additional properties are implied by these; for example, if (N, v) is a
market game (i.e., totally balanced), then Pv < v.

The potential approach can be extended to games with a continuum of players.
We consider here only the finite type case: the game is given by a pair (f, z),
where f: R"—> R (with f(0)=0) is the characteristic function, and z=
(Z4,...,z") € R" represents the grand coalition (z' being the “number” of

"This “summability” condition that is satisfied by the Shapley value can be stated as follows: For
every game (N, v) and every S C N with |S| =s

Y She({iy,ig,...y iy}, 0)
t=1

is the same for all orderings i}, i,,...,i; of the elements of S (this number is just P(S,v)). This
condition may be viewed as “path-independence.”

We note that D’Aspremont, Jacquemin, and Mertens (1984) have recently defined a class of real
functions on games: “aggregate (power) indices.” It can be easily checked that the potential function
does not belong to this class. However, it would be included if their “Normalization axiom” is
dropped (the potential function is obtained when, in their notations, du(a)=da/a—ie., v is the
Lebesgue measure).
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players of type i). This is, for instance, the standard setup for cost allocation
problems, f being either the “cost” or the “production” function (see Billera and
Heath (1982) and Mirman and Tauman (1982)). A (type-symmetric) feasible and
efficient solution to (f,z) is then a vector ¢(f,z)€ R" with the property
z-¢(f,z)=f(z). A potential for f is a differentiable function F: R” — R such
that for any z we have z- dF(z) = f(z), where dF(z) is the gradient of F at z.
All the results in this section generalize: Given f, there is one and only one
potential® F. Moreover, the solution ¢(f,z)=dF(z) corresponds to the
Aumann-Shapley (1974) value for games with a continuum of players (it is thus
called “the Aumann-Shapley price vector”). Hence, this is the only integrable
vector field §, on R’ satisfying z-y,(z)=f(z) for all z€ R’,. Finally, the
potential F can be derived explicitly and takes a familiar diagonal form (compare
with Proposition 2.4):

F(z)=f01-1—f(tz)dt.

3. PRESERVATION OF DIFFERENCES

We now take a different tack to the payoff allocation problem. It will, however,
lead us to the same solution.

Consider the grand coalition N in the game (N, v). Suppose we are given
constants d'/ for all i, j€ N which are compatible, in the sense that d' =0,
dV=—d/" and d"V+d/*=d' for all i, j, k€ N. We say that a payoff vector
(x"); < v preserves differences according to {d"} if

x'—x/=d"Y foralli,j.

It is trivial to verify that, given compatible constants {d'/}, there exists a single
efficient payoff vector x that preserves differences:

|N|{ (N)+Zd”}, x/=x'—d".

To have a well defined solution we therefore only need to specify, for every
game, differences {d'/}. We do this recursively. Suppose that payoffs have been
determined for all strict subgames of (N, v); let x'(S) be the payoff of player i in
(S, v), for i € S C N. Then we convene that the difference d*/ to be preserved is:

(1) dY=x'(N\{j})-x/(N\{i});

that is, the difference between what i would get if j was not around and what j
would get if / was not around. (It will be seen below that these differences are
indeed compatible.) This seems to be a most natural way to compare the
“relative position” (or, “relative strengths”) of the players. It is notable that, as it

® Minor regularity conditions are required; for example, f continuous and f(z) = 0(||z]) as z— 0
suffice. (See the formula for F below.)
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will be shown below, one obtains a unique efficient outcome which simultaneously
preserves all these differences.'°

The preservation of differences principle can be regarded as a straightforward
generalization of the “equal division of the surplus” idea for two-person prob-
lems. Indeed, in that case, the payoffs are

x'=x'({i, 7)) =v({i}) +3[o({i, j}) —o({i}) —v({7D],

thus

xt=x/=o({i}) —o({j}) =x'({i}) =x({J})
or: differences are preserved.
Observe that the proposed solution satisfies

(3.2) lZNx"(N) =p(N), and

(33)  x(N)=x'(N\{/j}) =x/(N) = x/(N\{i}).

Condition (3.3) has already been used by Myerson (1980), under the name of
“balanced contributions.” The mathematically inclined reader will recognize it as
a finite difference analog of the Frobenius integrability condition (i.e., symmetry
of the cross partial derivatives), which suggests that the solution admits a
potential function. Conversely, if a solution is generated by a potential, then (3.3)
is clearly satisfied.

THEOREM 3.4: The construction of the above solution, according to the principle
of preservation of differences, is well-defined. Moreover, the solution is generated by
a potential function—thus it coincides with the Shapley value.

PrOOF: Consider an n-person game (N, v). Assume, by induction, that the
solution has been already determined for all strict subgames of (N, v), and that
moreover

(35)  x'(8)=P(5)-P(S\{i})

for all i€ S C N, S # N (where P is the unique potential function, and P(S) is
short for P(S, v)). Note that (3.5) is of course satisfied for singletons (|S| = 1) by
efficiency (3.2).

Applying (3.5) to coalitions of size n — 1 implies that the differences d'/ are
indeed compatible, since

dii=x'(N\(j}) = x/(N\ {i})
= [P(N\{(J}) = P(N\{i, j})] = [P(N\ {i}) = P(N\ (i, j})]
=P(N\{Jj}) = P(N\{i}).

1 One wants to preserve differences rather than, say, ratios, since the resulting outcome should not
depend on the choice of origin of a player’s utility scale.
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Therefore (x‘(N)), is well defined, and we have

x'(N) = x/(N)=d"=P(N\{j}) - P(N\ (i}).
Fix i, and average over j:

F(N) = o) = - T PN (J) - PN\ (1))

JEN
(by (3.2)). Thus

4 1
X'(N)+P(N\{i})=—|o(N)+ ¥ P(N\{/j})|.
n JEN
By (2.2), the right-hand side is exactly P(N); thus (3.5) is satisfied for S = N also.
Q.E.D.

4. CONSISTENCY

This section is devoted to a characterization of the Shapley value by means of
an (internal) consistency property. Such an approach may be traced back to
Harsanyi (1959). It has been successfully applied to a wide variety of solution
concepts: Davis and Maschler (1965), Sobolev (1975), Lensberg (1982), Balinsky
and Young (1982), Thomson (1984), Peleg (1985, 1986), Aumann and Maschler
(1985), Moulin (1985), etc. We will discuss the connections between some of these
approaches later in this section.

The consistency requirement may be described informally as follows: Let ¢ be
a function that associates a payoff to every player in every game. For any group
of players in a game, one defines a reduced game among them by giving the rest
of the players payoffs according to ¢. Then ¢ is said to be consistent if, when it is
applied to any reduced game, it yields the same payoffs as in the original game.
The various consistency requirements differ in the precise definition of the
reduced game (i.e., exactly how are the players outside being paid off).

Formally, let ¢ be a function defined on G, the set of all games (see Section 2),
with ¢(N, v) a vector in R" for all (N,v) in G; such a function is called a
solution function. We will write ¢'(N, v) for its ith coordinate; thus, ¢(N, v) =
($(N,0)); e n-

Let ¢ be a solution function, (N, v) a game, and T C N. We define the reduced
game (T, v$) as follows:

(41) v (S)=0v(SUT)- Y ¢(SUTv), forall ScT,

ieT*

where 7<= N\ T. A solution function ¢ is consistent if, for every game (N, v)
and every coalition T C N, one has

(42)  ¢/(T,v%)=¢’(N,v), forall jeT.

The interpretation is as follows. Given the solution function ¢, a game (N, v)
and a coalition T C N, the members of T (or, more precisely, every subcoalition
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of T) need to consider the total payoff remaining after paying the members of T¢
according to ¢. To compute the worth of a coalition SC T (in the reduced
game), we assume that the members of 7\ S are not present; in other words, one
considers the game (S U T¢, v), in which payoffs are distributed according to ¢.
The appropriateness of this definition of reduced games depends, of course, on
the particular situation being modelled; more specifically, on the concrete as-
sumptions underlying the determination of the characteristic function. An exam-
ple will be discussed later on in this section.

Note that one usually deals with efficient solution functions. In this case, (4.1)
can be rewritten as

(43)  v8(S)= Y ¢'(SUT-, ).

ieS

Furthermore, if ¢ is an efficient and consistent solution function, then necessarily

v3(T)= ¥ ¢/(T,03) = L ¢/(N,0) =v(N) = ¥ ¢(N,v),

jeT JjET ieT*
which is exactly (4.1) for S = T. If one wants the definition of v%(S) to be always
according to the same rule, then (4.1) results for all S C T.
The following lemma shows that whether ¢ is consistent or not may be
determined by considering only singleton coalitions 7.

LEMMA 4.4: ¢ is a consistent solution function if and only if (4.2) is satisfied for
all games (N,v) and all T C N with |T¢| = 1.

Proor: Use induction on the size of T¢. Q.E.D.
The first result is as follows:
PROPOSITION 4.5: The Shapley value is a consistent solution function.

PrOOF: We will use the potential P, as defined by (2.1). Let (N, v) be a game
and let i € N; we will write v_; for v} (,), where ¢ = Sh. Since Sh is efficient,
we have for all SC N\{i}:

v_(S)=v(SU{i})=Sh(SU{i},v)= Y SK/(SU{i},v)
JES
= X [P(SU{i},0) =P(SU{i}\{/j}.0)].
JES
By Theorem A, formula (2.1) applied to (N\{i},v_;) and all its subgames

uniquely determines their potential. Comparing this with the above equalities, we
obtain that P(S,v_;) and P(S U {i}, v) may differ only by a constant'!

P(S,v_)=P(SuU{i},v)+ec.

" From P(¢,v_,) =0 it follows that ¢ = — P({i}, v); this is however not needed in the sequel.
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Thus
ShA(N\{i},v_;)=P(N\{i},v_;) = P(N\{i,j},v_;)
=P(N,v) =P(N\{/},v)
= Sh/(N,v). Q.E.D.

Next, we will show that the property of consistency is essentially equivalent to
the existence of a potential function; thus, consistency almost characterizes the
Shapley value. “Almost” refers to the “initial conditions,” namely, the behavior
of the solution for two-person games.!?

A solution function ¢ is standard for two-person games if

4.6)  #({i )}, 0) =o({i}) +3[e({i j}) —o({i}) —o({i})]

for all i#j and all v. Thus, the “surplus” [v({i, j}) —v({i})—v({j}] is
equally divided among the two players. Most solutions satisfy this requirement,
in particular, the Shapley value and the nucleolus.

THEOREM B: Let ¢ be a solution function. Then:
(i) ¢ is consistent; and
(ii) ¢ is standard for two-person games;

if and only if ¢ is the Shapley value.

PrOOF:!? One direction is immediate (recall Proposition 4.5).
For the other direction, assume ¢ satisfies (i) and (ii). We claim first that ¢ is
efficient, i.e.,

(47) X ¢(N,v)=v(N)
iEN
for all (N, v). This indeed holds for |N| =2 by (4.6). Let n > 3, and assume (4.7)

holds for all games with less than n players. For a game (N, v) with |N| = n, let
i € N; by consistency

Y o/(N,o)= X ¢/(N\{i},v )+ (N,v),
JEN JEN\{i}

where v_, = v\ (i}- By assumption, ¢ is efficient for games with n —1 players;
thus

=0 (N\{i}) + (N, v) =0(N)

(by definition of v_;). Therefore ¢ is efficient for all n > 2.

2 In contrast to the potential approach (in Section 2), consistency requires one to consider a large
domain of games rather than a single one. Moreover, the reduced games may not share some of the
properties of the original game; e.g., super-additivity (consider the three-person majority game).

13 An independent proof (not based on the potential) has been communicated to us by Michael
Maschler. For yet another proof of uniqueness, see Lemma 6.8.
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Finally, for n=1, we have to show that ¢/({i},v)=v({i}). Indeed, let
v({i})=c, and consider the game ({i, j},v) (for some j+ i), with 0({i}) =
o({i, jPD=c¢, 0({j})=0. By (i), ¢'({i, j},0)=c and o/({i,j},0)= 0; hence
5_({i})=c—0=c=0v({i}), and c=¢({i, j},5) = #((i},5_) = #({i},v) by
consistency. This concludes the proof of the efficiency of ¢.

Next, we show that ¢ admits a potential. To that end, define a real function Q
on the set of all games of at most two players by

Q(¢,v)=0,
o({i},v)=v({i}),
o({i, j},v) =3[o({i}) +o({j}) +o({i i D],
for all v and all i#. It is straightforward to check that, for all (N, v) with
IN|=1,2:
(48)  ¢(N,0)=0(N,v) - Q(N\{i},v)
for all i € N.

We will now show that Q can be extended to all games (N, v), in such a way
that (4.8) always holds. Together with efficiency (4.7), this implies (2.1); therefore
Q is actually the potential P, and ¢ is the Shapley value.

We again use induction: Let n >3, and assume Q has been defined, and

moreover satisfies (4.8), for all games of at most n — 1 players. Fix a game (N, v)
with |N| = n. We have to show that

¢'(N,v) + Q(N\{i},v)
is the same for all i € N (and this will then be Q(N, v)). Let i, jE N, i #j, and
let k€N, k+1i, j (such a k exists since |N| > 3).
We have (by consistency and (4.8) for n — 1)

¢'(N,v) —¢/(N,v)
=¢'(N\ (k},v_4) —¢/(N\{k},v_4)
= [Q(N\{k},0_4) = Q(N\{i.k},v_,)]
—[Q(N\{k},0_0) = Q(N\ {4, k},0_4)]
=[N\ {Jj,k},00) = Q(N\ (i, j. k), v-y)]
—[o(N\{i, k}, 0 ) = Q(N\{i, j.k},v_0)].
Apply again (4.8) (for n — 2) and consistency:
=¢'(N\{J. k}, o) —¢/(N\{i,k},v_;)
=¢'(N\{Jj},v) —¢/(N\{i},v)
= [e(M\{j}.v) - @(N\{i,j},0)]
~[o(N\{i},v) = Q(N\{i,j},v)]
=Q(N\{Jj},v) - Q(N\{i},v),

where we used (4.8) once more (for n — 1). This completes the proof. Q.E.D.
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REMARK 4.9: Theorem B (and all our other results on consistency in this
paper) applies to any fixed finite number of players; i.e., if one considers only
games with at most n players, then consistency together with the appropriate
initial condition suffice to characterize the solution. This should be contrasted
with other consistency results, e.g., Sobolev (1975), Lensberg (1982), Peleg (1986),
where an unbounded number of players is needed.

The standard solution for two-person games is very natural; it may, however,
be derived from more basic postulates.

A solution function ¢ is transferable-utility invariant (TU-invariant)** if, for
any two games (N, v) and (N, u) (with the same set of players) and real constants
a>0and {b'},c

u(S)=av(S)+ Y b* forall SCN
ies

implies

¢'(N,u) =a¢'(N,v) +b" forall ieN.

(Note: (N, v) and (N, u) are called TU-equivalent games.) TU-invariance re-
quires, first, that a change in scale common to all players should affect the
solution accordingly; and second, that adding a fixed amount, whenever a player
i appears, should lead to just adding this amount to his final payoff.

A solution function ¢ satisfies the equal treatment property if, for any game
(N,v) and any two players i, j € N,

v(SU{i})=v(SU{j}) forall ScN\{ij}
implies

¢'(N,v) =¢/(N,v).
Note that, for two-person games, this amounts to just

#({i,j},0)=¢/({i,j},0) =30({i,j})
whenever v({i})=v({j}).

THEOREM B’: Let ¢ be a solution function. Then:

(i) ¢ is consistent;

(ii) for two-person games: (a) ¢ is efficient, (b) ¢ is TU-invariant, (c) ¢ satisfies
the equal treatment property;
if and only if ¢ is the Shapley value.

Proor: Efficiency (a) and equal treatment (c) imply that
¢i({i’ j}’cu(i,j)) =3¢

)

14 .. . .. . . . .

This is sometimes referred to as “strategic invariance;” we prefer to call it “TU-invariance”
instead, in order to avoid confusion with “NTU-invariance,” where scales of different players may
change independently.
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for all i # j and all real ¢, where u; ;, denotes the {i, j }-unanimity game. Using
this for ¢=1, 0 and —1 together with TU-invariance (b) yields (4.6), and
Theorem B applies. Q.E.D.

It is instructive to compare our approach with Sobolev’s (1975) consistency
treatment of the (pre)nucleolus. The two concepts of consistency—namely, (4.2)
—are the same. The difference lies in the definition of the reduced game.'
Following Davis and Maschler (1965), Sobolev uses the following definition for
the reduced game (i.e., instead of (4.1)):

Y ¢/(N,v), S=T;
JET

(4100 oHE) = Max (o(5UQ) - T ¢(N0)|, $# T
= i€eQ
0, S=¢.

There are two important distinctions between the two definitions of the reduced
game: first, the maximum over all Q € T in (4.10) vs. just 0 = T* in (4.1); and
second, the payoffs to the players in T° are taken, for every S, according to the
solution of the game (N, v) in (4.10), and according to the solution of the
subgame (S U T¢, v) in (4.1).

These two differences may be understood as follows. The first indicates that, in
(4.10), some sort of strategic freedom is available to each coalition S: they may
choose which of the members of 7¢ (if any) to take along and pay them
according to the solution. In comparison, in (4.1) it is assumed that a// members
of T have to be paid off. The second difference lies in the way these payoffs are
computed. In (4.10), the members of T¢ are paid according to the solution
allocation (of the grand coalition), whereas in (4.1) according to the solu-
tion function, each time applied to the appropriate situation (namely, the solution
allocation of the coalition S U T°).

As we have already stated above, which definition is more appropriate will
depend on the context being modeled (and the way the characteristic function is
defined). An example where our definition seems natural is the problem of
allocating joint costs among several “projects” (or, departments, tasks, etc.);
these are now interpreted as the players. It is to be emphasized that these cost
imputations are not meant to be “efficiency prices” (i.e., usable to make invest-
ment decisions on which of the projects to undertake); in fact, except in trivial
cases, cost allocations satisfying the adding-up condition would generate ineffi-
cient decisions if used as investment guides. In summary the problem is: we are
given a fixed set of projects, and required (by the legal and/or administrative
environment—e.g., the tax authorities) to obtain an exact distribution of total
costs. To this end, one should, of course, take into account all available informa-
tion, in particular, the cost of any subset S of projects (assuming that these are

13 Also, Sobolev uses the other assumptions (e.g., symmetry) in an essential way (for all 7).
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the only ones to be undertaken). We assume that this information (that may not
be always easy to get) is available to the “accountants” in charge of computing
the cost imputations.

What does consistency mean in this framework? Consider a multi-state com-
pany and a restricted set T of projects, say those in Tennessee. For every subset
S C T of Tennessee’s projects, the local accountant has to determine their cost,
assuming that these are the only projects in Tennessee to be undertaken. In
addition, there is the set 7 of all the projects outside Tennessee (which are not in
the domain of the local “gedanken experiment”). The cost of S is therefore the
amount imputed to S by the general accounting procedure under consideration
(solution function) when the projects to be implemented are SU T°. This is
exactly formula (4.3), and consistency requires that the local accountant’s impu-
tation be no different than the one obtained (for the Tennessee projects) by the
general (national) accountant.

As suggested by the comparison of (4.1) and (4.10) there are two additional
possible definitions of the reduced game. One is

(411) v2(S)=v(SUT)- Y ¢(N,v)
ieT*
for all S C T. This definition is similar to (4.1) according to the first criterion
mentioned above (no maximum), and similar to (4.10) according to the second
criterion (¢'(N) rather than ¢'(SU T¢)). The resulting consistency has been
studied by Moulin (1985). He shows (Lemma 6 there) that it characterizes the
so-called “equal allocation of nonseparable costs.”
Finally, the fourth possible definition of a reduced game is:

v(N) - 'chf(N,v), S=T,
(4.12)  v3(S) = er

Maxc<u(SUQ)— Z¢"(suQ,u)}, ScT.

QcrT ieQ

However, there is no solution function that is standard for two-person games and
is consistent according to (4.12).1

5. WEIGHTS

The result in the previous section, Theorem B’, characterizes the Shapley value
by means of consistency!’ together with natural initial conditions for two-person
games. In this section we drop the equal treatment property, and characterize the
resulting consistent solutions. They turn out to be the weighted Shapley values,

16 A counterexample is provided by the following four-person game: N = {1,2,3,4}; player 4 is a
null player; v({1,2}) =v({2,3}) =12, v({1,3}) =24, v({1,2,3}) =27, and v(S)=0 for all other
S c {1,2,3}. One may, however, restrict the class of games under consideration. For example, a class
of games can be found (containing, in particular, all convex games), at which the Shapley value is the
unic;ue solution that is standard for two-person games and consistent according to (4.12).

' From now on we will only deal with the original consistency (i.e., according to (4.1)).
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introduced by Shapley (1953a) (see also Owen (1968), Shapley (1981), Kalai and
Samet (1987)).

To present these solutions, we will first assume that a collection of weights is
exogenously given. All the results of the previous sections (with the appropriate
modifications) will be seen to remain valid in this more general setup: they are all
related to a notion of weighted potential. We will then obtain our main result
(Theorem C): consistency and the initial conditions for two-person games of
Theorem B’, with equal treatment replaced by monotonicity, imply the existence
of weights such that the solution is precisely the corresponding weighted Shapley
value. Thus, weights are obtained endogenously, from the solution itself.

Formally, suppose first that for each player i we are given a weight w'> 0;
let!® w=(w'),. These weights can be interpreted as “a-priori measures of
importance;” they are taken to reflect considerations not captured by the charac-
teristic function. For example, we may be dealing with a problem of cost
allocation among investment projects. Then the weights w' could be associated to
the profitability of the different projects. In a problem of allocating travel costs
among various institutions visited (cf. Shapley (1981)), the weights may be the
number of days spent at each one.

In line with the above interpretation, we would now desire that in any
unanimity game the worth be distributed among the players in proportion to
their weights. In a unanimity game, every player has exactly the same (marginal)
contribution. Therefore, to obtain the w-proportional allocation we need to
weight the marginal contribution of each player i by his w'.!?

We are thus led to the definition of a w-potential P,,, as a function P,: G — R
with P, (¢, v) = 0, satisfying the following condition:

(5.1) .ZNW"D'.PW(N,U)=U(N)

for all games (N, v). The potential of Section 2 of course corresponds to w' =1
for all ..

THEOREM 5.2: For every collection w=(w'); of positive weights there exists a
unique w-potential function P,. Moreover, the resulting solution function, associat-
ing the payoff vector (w'D'P,(N,v));n to the game (N, v), coincides with the
w-weighted Shapley value Sh,,. Finally, P, can be computed recursively by the
formula

P,(N,v)=|v(N)+ ) w"PW(N\{i},u)] Y wh

ieEN ieN

'8 One may think of a universe U of players, such that N is always a finite subset of U (cf. Shapley
(1953b)).

1% A player with weight 2 may be thought of (in some contexts) as two players with weight 1 (see
Shapley (1981)).
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PrOOF: The only thing to check is that the w-potential indeed yields the
weighted Shapley value Sk ,,. It is easily seen (by the recursive formula above, for
example) that P, (N, v) =0 if (N, v) is the null game (with v(S) =0 for all S),
and P,(N,cuy)=c/L,cyw' for an N-unanimity game (c is a constant). There-
fore w'D'P,(N,cuy)=cw'/L, o yw'=Shi (N, cuy). Together with additivity
(shown inductively using the recursive formula), the proof is completed. Q.E.D.

REMARK 5.3: We are assuming throughout that all the weights are positive
numbers. One may extend this to allow zero or infinite weights (see Kalai and
Samet (1987)).

Note that the w-potential is (positively) homogeneous of degree minus one on
the weights, and the corresponding payoff vector (the weighted Shapley value) is
homogeneous of degree zero. One could thus think of the w-potential as being
measured in per-unit-weight terms. It is to be again emphasized that the weights
are unrelated to the characteristic function and that the players (or projects, etc.)
are to be regarded as indivisible.

An explicit formula for the w-potential function (of which Proposition 2.4 is a
special case) is the following: For each i, let X' be a random variable with
distribution function Prob (X’ < t)=¢" for all ¢ €[0,1], and assume all the X'’s
are independent. For every 1 € [0,1], let N(¢) = {i € N| X' <t} (if one interprets
X' as the arrival time of i, then N(z) is the set of players that arrived up to time
t; see Owen (1968)). Then it may be checked that

P,(N,v)= E[LI%U(N(t)) dt].

The preservation of differences principle (see Section 3) also applies here; it
just becomes

1 1 1 1
(54)  —ox!(N) = —xd(N) =d" = —x(N\ (j}) = —x/(N\ (1))

(thus, the differences between the normalized—i.e., per-unit-weight— payoffs are
preserved).

Up to this point the introduction of weights may appear as a rather ad-hoc
construction. For practical purposes we may want to add some flexibility to the
Shapley value, obtaining nonsymmetric generalizations. But, why do it in this
particular way? We will now see that the consistency postulate leads us directly
to this class of weighted Shapley values.

Recall the definition of a reduced game (4.1) and the consistency postulate
(4.2). The first observation is the following:

PROPOSITION 5.5: For every collection of positive weights w = (w'),, the corre-
sponding weighted Shapley value Sh,, is a consistent solution function.

ProoOF: Mutatis mutandis as for Proposition 4.5, replacing the potential by the
w-potential. Q.E.D.
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Next, we generalize the standard solution to two-person games (“divide the
surplus equally”) in a nonsymmetric way as follows:

Let w=(w'), be positive weights. Then a solution function ¢ is w-proportional
for two-person games if

w

(5:6) (0 13.0) =0((1)) + s [0((h 1)) = 0(()) = o( (/)]

for all i #j.
We then have the generalization of Theorem B.

THEOREM 5.7: Let ¢ be a solution function and w a collection of positive weights.
Then:

(i) ¢ is consistent; and

(ii) ¢ is w-proportional for two-person games;
if and only if ¢ is the w-weighted Shapley value Sh.,.

PrOOF: Mutatis mutandis as for Theorem B. Q.E.D.

In Theorem 5.7 the weights are introduced exogeneously through the initial
conditions for two-person games. We shall now see that, with some very weak
conditions on the behavior of the solution for two-person games, consistency
actually enables us to rule out all but the proportional solutions. Thus, we obtain
a completely endogenous generation of the weights, and, a fortiori, of the
weighted Shapley values.

We need the following definition (which will actually be applied only to
two-person games). A solution function ¢ is monotonic if, for any two games
(N, v) and (N, u),

u(N)>v(N) and u(S)=0(S) foral S#N
imply
¢'(N,u)>¢(N,v) forall ieN.

Thus, if the (grand coalition’s) total payoff increases, but nothing else changes,
then every player should get an increase in his own payoff. Note that, for
two-person games, monotonicity is just ¢'({i, j}, u) > ¢'({i, j}, v) and
¢/({i, j}, w) > ¢'({i, j}, v) when wu({i}) =v({i}), u({j})=v({/}) and
u({i, j}) > v({i, j}).

We now obtain the main result of this section.

THEOREM C: Let ¢ be a solution function. Then:

(i) ¢ is consistent; and

(ii) for two-person games: (a) ¢ is efficient, (b) ¢ is TU-invariant, (c) ¢ is
monotonic;
if and only if there exist positive weights w= (w'); such that ¢ is the w-weighted
Shapley value.
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The proof of Theorem C can be found in the Appendix. It is important to
point out that, in contrast to Theorem B’, the conditions (ii) (a)—(c) for two-per-
son games do not imply that ¢ is a w-proportional solution for n = 2. One needs
to use consistency repeatedly (for n = 3) in order to obtain the initial condition
for n=2.

6. NONTRANSFERABLE UTILITY

We now extend the potential function approach to the general case, where
utility need not be additively transferable.

A nontransferable-utility game—an NTU-game, for short—is a pair (N, V),
with V(S) a subset of RS for all coalitions S of N. The interpretation is that
x=(x");es€ V(S) if and only if there is an outcome attainable by the coalition
S, whose utility to member i of S is x’. From now on, we will refer to games in G
as TU or transferable-utility games. A TU-game (N, v) in G corresponds to the
NTU-game (N, V'), where

V(S)={xERS: Zx‘sv(S)}.

ieS

We make the following (standard) assumptions: All sets V(S) are (i) nonempty,
(ii) not the whole space (RS), and (iii) comprehensive.

How are marginal contributions computed in an NTU-game? Clearly, the
formula P(N,V)— P(N\{i},V) leads to interpersonal comparison of utilities,
since all players use the same number P(N, V). It is thus appropriate to use it
only when the weights of the players are equal.

This suggests the following construction: First, use the potential function
approach to obtain, for each collection w = (w'), of positive weights, a solution
x,,. Second, require that w represent the appropriate marginal rates of efficient
substitution between the players, at x,. This is a standard procedure for
obtaining solutions in the nontransferable utility case. One first assumes that the
utility scales of the players are comparable (according to the weights w) and then
requires that these are indeed the “right” weights at the resulting solution. This
makes the final solution correspond to a fixed-point (of the mapping w — x, —
w’), and, most important, independent of rescaling utilities (for each player
separately).

Formally, let w=(w’), be a collection of positive weights. The w-potential
function P, associates with every NTU-game (N, V') a real number P, (N, V),
such that

(6.1)  (w'DP,(N,V)),.yEbAV(N)

ieEN

where bd V(N) denotes the (Pareto efficient) boundary of the set V(N) (recall
assumption (iii)); without loss of generality, let again P, (¢, V') = 0. Thus, (6.1) is



POTENTIAL, VALUE, AND CONSISTENCY 607

the exact counterpart in the NTU-case of (2.1) (or, (5.1)) in the TU-case: the
vector of (rescaled) marginal contributions is efficient.?

THEOREM 6.2: For every collection w= (w"); of positive weights there exists a
unique w-potential function on the class of NTU-games. Moreover, the resulting
solution function, associating the payoff vector (w'D'P,(N,v));cy to the NTU-
game (N, V), coincides with the w-egalitarian solution.

The egalitarian solutions have been studied by Myerson (1980) and Kalai and
Samet (1985). They may be viewed as the first step in the construction of the
Harsanyi (NTU-) value (cf. Harsanyi (1963)). Note that the w-egalitarian solu-
tion coincides with the w-Shapley value for TU-games.

PrOOF: Assumptions (i)—(iii) above imply that, for each S, the set V(S) is
bounded from above in any strictly positive direction, hence bd V'(S) intersects
any such line in a unique point. The proof proceeds by induction as in Theorem
A, yielding P,(N,V) as the unique ¢ such that y 4+ w € bdV(N), where y'=
—w'P,(N\{i},V) for all i€ N. This construction is easily seen to give the
w-egalitarian solution (see Kalai and Samet (1985)). Q.ED.

A (Pareto) efficient payoff vector x € bd V(N) is called w-utilitarian (for given
positive weights w = (w’),) if it maximizes the sum of the utilities over the
feasible set V(NN), rescaled according to w:

1 1
Y, —x'> ) —y' forall yeV(N).
ieN W ieN W
Finally, x is a Harsanyi (1963) value if there exist weights w such that it is
simultaneously w-egalitarian and w-utilitarian. We thus finally obtain the follow-
ing theorem.

THEOREM D: For every NTU-game (N,V), the payoff vector x € R" is a
Harsanyi value®* of (N, V) if and only if there exist positive weights w = (w"); such
that

1 4
—x'=D'P,(N,V), foralli€N, and
w

1 1
Y, —x'> Y. =y, forallyeV(N).
w

ien W ieN

D1t is easy to check that, for TU-games (represented in NTU form as above), we obtain the same
w-%otential of Section 5.

! We actually obtain only the nondegenerate Harsanyi values (i.e., those corresponding to positive
weights). Again, this can be easily fixed (see Remark 5.3).
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Since the egalitarian solutions are obtained by the potential approach, one is
naturally led to investigate whether they can in fact be also characterized by the
preservation of differences principle, and by consistency. It should come as no
surprise that these aiternative approaches apply just as in the TU-case.

In what concerns the preservation of differences principle, for every given set
of weights w, it is easily seen that it uniquely determines the w-egalitarian
solution. Of course, the efficiency condition (3.2) becomes x(N) € bdV(N); as
for (3.3) and its weighted counterpart (5.4), they remain unchanged. The applica-
tion of this principle when the utilities are not transferable and are only assumed
to be comparable (by the weights w) seems to yield a good foundation for the
egalitarian solutions (and thus, a fortiori, for the Harsanyi value). In particular,
there is no need for “dividends” (cf. Harsanyi (1963)) which accumulate (and
which may sometimes be negative); instead, one considers only the relative
positions of the players as more and more coalitions are taken into account.

Next, consider consistency. The definition of the reduced game is the natural
extension of (4.1) to the NTU-case (see Maschler and Owen (1986)). For every
solution function ¢, a game (N,V), and a subset TC N, the reduced game
(T, V§) is defined by:

VE(S)={xe€R5 (x,(¢(SUTV)),cpc) EV(SUT)}

for all S C T. Thus, V#(S) is the S-section of V(S U T¢) when the coordinates of
all players outside T are fixed at their solution imputation (in the SU T¢
subgame). The solution function ¢ is consistent if

¢’(T,VE) =¢’(N,V)
for all games (N, V') and all j € T C N. Note that, in the case of an NTU-game
that corresponds to a TU-game, this definition coincides with the one used in
Sections 4 and 5.

From now on we restrict our attention to nonlevel NTU-games, defined as
those games (N, V') such that, for all Sc N, if x, yebdV(S) and x >y, then
x = y. This condition has been widely used in the study of NTU-games; it means
that strong and weak efficiency coincide. We use it here in order to guarantee
that, if x = (x"),c v is efficient, then x5 = (x'), . is efficient in the correspond-
ing reduced game.

The main result we obtain is the following:

THEOREM E: Let ¢ be a solution function on nonlevel NTU-games and let w be a
collection of positive weights. Then:

(1) ¢ is consistent; and

(i) ¢ is the w-proportional solution for two-person TU-games;
if and only if ¢ is the w-egalitarian solution.

REMARK 6.3: The initial conditions (ii) apply to two-person TU-games only. It
is therefore noteworthy that the consistency requirement enables one to obtain
the w-egalitarian solution without having to assume it for two-person NTU-games,
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where it is a much stronger primitive postulate than in the two-person TU-case.
Moreover, it will be seen in Lemma 6.9 below that, if one assumes that ¢ is the
w-egalitarian solution for two-person NTU-games (i.e., two-person bargaining
problems) then consistency easily implies that it coincides with the w-egalitarian
solution for all games (this is exactly as in the TU-case: see Theorems B and 5.7).

REMARK 6.4: Theorems B’ and C show that the initial conditions (ii) follow
from more primitive postulates using consistency. In particular, the weights are
obtained endogenously. For example, Theorems C and E imply the following
theorem:

THEOREM 6.5: Let ¢ be a solution function on nonlevel NTU-games. Then:

(i) ¢ is consistent;

(i) for two-person TU-games: (a) ¢ is efficient, (b) ¢ is TU-invariant, (c) ¢ is
monotonic;
if and only if there exist positive weights w such that ¢ is the w-egalitarian solution.

REMARK 6.6: Since Theorem E and Theorem 6.5 characterize only the w-
egalitarian solutions, it follows that one cannot require in addition invariance
under independent utility rescalings (i.e., where players may rescale differently).
This has been shown by Maschler and Owen (1986), who also discuss a weaker
form of consistency.

Proor oF THEOREM E: It will follow from Lemmata 6.7-6.9 below.
LEMMA 6.7: The w-egalitarian solution is consistent.

ProOF: The proof follows the same lines as Proposition 4.5, since it is
generated by a potential function. Q.E.D.

LEMMA 6.8: There exists a unique consistent solution that is w-egalitarian on
two-person NTU-games.

PrROOF: One may use an argument similar to that in Theorem B. We will
instead provide an alternative direct proof (which also works for Theorem B, and
Theorem 5.7). First, as in the TU-case, one shows by induction that if a solution
function is efficient for » =2 and is consistent, then it is efficient for all n.

Let ¢ and y be two solution functions satisfying the hypothesis, and assume
by induction that they coincide for all games of at most n — 1 players. Let (N, V')
be an n-player game, and let i, j €N, i #j. Consider the two reduced games
(i, J 1 VE ;) and ({4, j}, V(";‘ ;1)» Which we will denote for short by ¥ and 142
They coincide for singletons (by induction, since only n—1 players matter);
therefore, since ¢ is w-egalitarian for two-person games, we have ¢/(V*) 2 ¢/'(V¥)
if and only if ¢/(V*)2 ¢/(V¥) (both lie on the same strictly positive ray). Now
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¢ =1 for two-person games, and both ¢ and ¢ are consistent; therefore
$(V) =¢(V*) 2¢(VY) =¢/(V¥) =¢/(¥)

if and only if, similarly,

¢/ (V) 29/(V).
This applies to any two players, and both ¢(7) and (V) are efficient; thus
o(V)=4(V). Q.E.D.

LEMMA 6.9: If ¢ is consistent and w-proportional for two-person TU-games, then
it is w-egalitarian for two-person NTU-games.

Proor: Let ({i, j},V) be a two-person NTU-game. Denote z = (z’,z/) =
(V). We will show that z is the w-egalitarian solution of V, ie., w/(z' —a') =
w/(z/ — a’), where o' = sup {x": x' € V({i})} and o’/ =sup {x/: x/ € V({j}}.

Define a three-person NTU-game ({, j, k }, U) as follows:

V(s), if Sc {i,j},

{xERS: Y x'< Za’}, otherwise
les  les

U(s) =

where we put «* =0.

Let (', y/, y*) = ¢(U).

Consider the reduced games U?,, U?;, U?,. It can be easily checked that they
all correspond to TU-games, which we will denote by u_; u_;, and u_,,

_j»
respectively: 22

u_i(j)zzj’ u_,'(k)=0, u—i(jk)=yj+yk,
u_j(i)=2z, u_j(k)=0, u_;(ik)=y"+y*,

u_(i)=d, u_ (j)=o/, u_, (ij)=y"+y’.

Therefore, since ¢ is consistent, and is the w-proportional solution for two-per-
son TU-games, we obtain:

wi(y/ —z/) =wk(y*-0),
wi(y'=z) = wh(y*-0),
Wy =) = wi(y) = o),
from which the required equality follows. Q.E.D.

22 We write u(i), u(ij), etc., instead of u({i}), u({i, j}),... .
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APPENDIX

PROOF OF THEOREM C: In view of Theorem 5.7, we have to prove that (i) and (ii) imply that ¢ is a
proportional solution for two-person games: namely, there exist positive weights { w'}, such that (5.6)
holds.

Let i #j, and consider the {i, j}-unanimity game ({i, j}, u(; ,3): u(, (V) =u, ,;(j) =0 and
ug;, (i, j)=1. Put

oy =¢({i,j},uu ), and

Biiy=-¢({i,j}—uu )

By efficiency (ii) (a), we have

(A1)

(A2) oyt =By By =1

A two-person game ({i, j},v) is essential if the “surplus” ¢ = v(i, j) — v(i) — v() is not zero; it
is then strategically equivalent to either u(, ,, or —u, , , depending on the sign of ¢. By
TU-invariance (ii)(b) and (A.1) we therefore obtain, for any essenna] game ({i, j},v),

(A3) #({i,j},0) =v(@) +8[e(i, j) —v(i) =v())],

where &' = af,  if the surplus 0> 0 and 8" =8, ,, if 0 <0.
By monotonicity (ii)(c), the coefficient 8’ of v(i, j) must be positive; thus

(A4) o, ,,>0, B, >0

Let ({4, j}, v) be a two-person inessential game: v(i, j) =v(i) + v(j). Let v, v be defined as
follows (£ > 0):

i (1) = oG 1) e
v (i, 7)=v(i,j) e
g (i) =v (i) =v (i),
o () =u () =v()).
Monotonicity yields:
#({i,7},0) <#({i,j},ur) =v(i) +eafy, .
>¢({i, 7} 07) =v(i) + &b, -

As ¢ decreases to 0 we obtain ¢/({i, j}, v) = v(i). Thus, formula (A.3) applies to inessential games as
well.
In particular, we note that (A.3) and (A.4) imply

(AS5) #({i,j},v) —v(i) and ¢’({i,j},v) —v(j) have always the same sign (+, —, or 0).
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LEMMA A.6: There exist positive numbers {w" }. such that
1

w
a'(,’j) = _(w'+wf) forall i#j.

PROOF: Fix a player k, and define:

wk=1,
al, .

w=—L8 o ek
Xi, k)

We have to show that

a‘r. w! all,k} ak N3
(A7) ,(”=—,-‘ { fl )
My W Mk ok
together with (A.2), it will imply our result.
Let (N, v) be the {i, j, k }-unanimity game: N = {i,j,k},v(N)=1, v(S)=0 for all S+ N. Let
x = ¢ (N, v) be its solution.
Consider now the reduced game (N\ {i},v_,), where v_, = u‘,‘t,\(,):

o (Ui k) =v(i, j k) =¢({i,j, k},v) =0(N) - x' = x/ + x*,
v (J)=v(i, ) =#({i,j},v) =0-0=0
(use (A.3), or note directly that ({i, j}, ) is the null game, thus inessential). Similarly,
v_,(k)=0.
Consistency and (A.3) now imply that
x/=¢/(N,0) =¢/(N\ {i},v_,) =8/(x’ +x*), and
(A.8)
xk =¢k(N,v) =¢k(N\{i},v,,) =8k (x’ + x¥),

where 8/ =af ) or B(jj_k), and 8*=of; ,, or B{).xy- Therefore x/ and x* have the same sign
(+, —, or 0): recall (A.5) or (A.4).

~ This holds for any two players in N; therefore x', x/, and x* all have the same sign. Together with
x'+x/ + x¥ = v(N) =1, this yields x', x/, x* > 0. From (A.8) we obtain

x/
a‘(’j_k)=8/=m and
k
X
k — k=
o,k =8"= o+ xk
This is true for any two players in N, from which (A.7) follows immediately. Q.E.D.

LEMMA A.9: There exist positive numbers {u'}, such that

1

B(',‘J} = m foralli#j.

PrROOF: The same as for Lemma A.6, using — v instead of v. Q.E.D.
LEMMA A.10: There exists a positive number p such that u' = pw' for all i.

PROOF: Let i, j, k be all different, and consider the following game: ({i, j, k},v), with v(i, k) =
w'+wk, v(j, k) =w! +wk, v(i, j, k) = c for some ¢ satisfying w* < ¢ < w' + w/ + wk, and v(S) =0
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otherwise. Let (x', x/, x¥) be its ¢-solution. Consider the reduced games v_,,v_,,U_y:
v, (Grk)=v(i, j, k)= ¢({i, j,k},v) =v(i, j, k) — x' = x/ + x¥,
v, (J)=v(i,))—¢({i,j},v) =0

(since ({i, j},v) is the null game), and
v_;(k)=v(i, k) =¢({i,k},v) =¢"({i,k},v)

wk
=0+

e L W) —0-0] =wk
(recall (A.3) and Lemma A.6). Similarly:

v_;(i,k)=x' + xk,

v_,(i)=0,

v_,(k)=w"
Finally:

vy (i, J) =x"+x7,

v_g (i) =v(i k) = ¢ ({i,k},v) =w',

v (J)=v(j, k)= ({j, k},v) =w.

Assume x* < w*. By (A.5) applied to v_, we obtain x’<0; and by considering v_,, we obtain
x' < 0. But this contradicts x' + x/ + x¥ = ¢ > w*. Therefore x* > w*, x/ >0, x' > 0, and moreover

j_ J J

x/ =0 oy, i w

— k)

k= Tk =— (fromv_,),
xk—w of W

x'—0 w!

kK_ k& (from v_;)

X —w w

This implies

X ow

(a1) —-=—.
< wl

Next, consider v,. Since x*

>wk and x'+x/ + x¥=c<w'+w/ + wk, we have x' + x/ <w' + w/,
and

But (A.11) implies (x'—w')/(x/ —w’/)=w'/w/; hence w'/w’/=u'/u’, or w'/u'=w’/u’. This

holds for all i #j, proving our claim. Q.E.D.

The three lemmata and (A.3) thus imply (5.6): ¢ is the w-proportional solution for two-person

games, completing the proof of the theorem. Q.E.D.
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